

ANNUAL WATER QUALITY REPORT

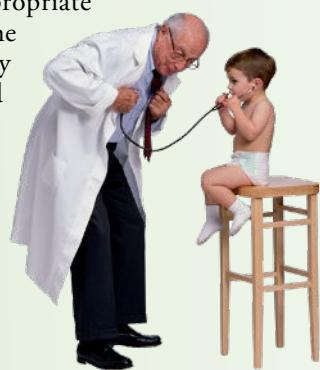
REPORTING YEAR 2019

Presented By
**Groveland Water and
Sewer Department**

PWS ID#: 3116000

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2019. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education, while continuing to serve the needs of all our water users.


Please remember that we are always available should you ever have any questions or concerns about your water.

Community Participation

You are invited to participate in our public forum to discuss any topic related to your drinking water and public water service. We meet Monday nights, once a month at our office located in Town Hall. The Meeting Agenda is posted one week in advance; please contact our office for assistance. Check on our website www.grovelandwaterandsewer.com for postings and meeting location.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or <http://water.epa.gov/drink/> hotline.

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at our office. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources.

According to the Source Water Assessment Plan, our water system had a susceptibility rating of "medium." If you would like to review the Source Water Assessment Plan, please feel free to contact our office during regular office hours. A copy of the SWAP report is available on the Town's website.

We remain vigilant in delivering the best-quality drinking water

Where Does My Water Come From?

The Town of Groveland is served by a groundwater supply consisting of three gravel-packed wells. Well #1 is located at 462 Main Street, Well #3 is located behind the Pines Recreation Area, and Well #4 is located further down the river from Well #3. Wells #1 and #3 are serviced by vertical turbine pumps that draw water from 50 feet down below the surface. The pumps are connected by long shafts to the drive motors, which are housed in the building above the wells. Well #4 uses a submersible well pump; this is composed of a sealed motor and pump mounted underwater 35 feet down in the well. Each of the wells can run independently of each other. Groveland's water is distributed through a network of water mains approximately 36.5 miles long and ranging in size from 2 to 12 inches in diameter. There are currently 1,961 active services connected to our system.

QUESTIONS?

For more information about this report, or for any questions related to your drinking water, please call the Groveland Water Department office at (978) 556-7200, and ask to speak with Colin Stokes.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the Department of Environmental Protection (DEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban storm-water runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Water Treatment Process

The treatment process consists of a series of steps. First, raw water is drawn from our water sources, and then inline chemical treatment is performed (NO FILTRATION). Computer-controlled metering pumps are used to administer the chemical, and chemistry is monitored by inline analyzers 24/7. Our treatment operators monitor the system daily and confirm the treatment goals.

Sodium hydroxide is added to make the water less corrosive by raising the pH. Corrosive (acidic) water has the ability to leach lead and copper out of piping and plumbing fixtures. We raise the system pH to an average of 7.5 (just above neutral, 7.0). This is high enough to keep the lead and copper from dissolving very much and still keep most of the iron and manganese in solution form.

Fluoride is added to the water as sodium fluoride to fight dental cavities. Both sodium and fluoride occur naturally in small amounts in the groundwater in this area. Natural fluoride occurs at a range of 0.05 to 0.10 mg/L. The fluoride is added to achieve a target dose of 0.70 mg/L to help build stronger, more cavity-resistant teeth for all who drink the water in their developmental years. The Groveland Water and Sewer Department is aware of the proposed Health and Human Services recommendations and will review our processes in light of the final recommendation. We will also pay close attention to regulatory developments and stand ready to respond.

Calcium hypochlorite is added to maintain a disinfection residual at an average of .10 mg/L throughout the distribution system. A target dose range of 0.50 mg/L has been established to achieve this residual.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. And, the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES								
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source	
Barium (ppm)	2018	2	2	0.0147	0.0091–0.0147	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	
Chlorine (ppm)	2019	[4]	[4]	0.1	0.06–0.15	No	Water additive used to control microbes	
Combined Radium (pCi/L)	2015	5	0	0.44	NA	No	Erosion of natural deposits	
Fluoride (ppm)	2019	4	4	0.6	0.4–0.8	No	Water additive, which promotes strong teeth	
Nitrate (ppm)	2019	10	10	1.14	0.508–1.14	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
TTHMs [Total Trihalomethanes] (ppb)	2019	80	NA	13.6	12.6–13.6	No	By-product of drinking water disinfection	
Tap Water Samples Collected for Copper and Lead Analyses from Sample Sites throughout the Community								
Substance (Unit of Measure)	Year Sampled	AL	MCLG	Amount Detected (90th %ile)	Sites Above AL/Total Sites	Violation	Typical Source	
Copper (ppm)	2018	1.3	1.3	0.125	0/20	No	Corrosion of household plumbing systems; Erosion of natural deposits	
Lead (ppb)	2018	15	0	3.7	0/20	No	Lead services lines; Corrosion of household plumbing systems, including fittings and fixtures; Erosion of natural deposits	
SECONDARY SUBSTANCES								
Substance (Unit of Measure)	Year Sampled	SMCL	MCLG	Amount Detected	Range Low-High	Violation	Typical Source	
Chloride (ppm)	2019	250	NA	57.4	25.9–113	No	Runoff/leaching from natural deposits	
Iron (ppb)	2019	300	NA	388	113–553	No	Leaching from natural deposits; Industrial wastes	
Manganese (ppb)	2019	50	NA	155	29–459	No	Leaching from natural deposits	
Odor (TON)	2019	3	NA	1	NA	No	Naturally occurring organic materials	
pH (Units)	2019	6.5–8.5	NA	7.60	7.51–7.77	No	Naturally occurring	
Sulfate (ppm)	2019	250	NA	12.4	11.2–13.7	No	Runoff/leaching from natural deposits; Industrial wastes	
Total Dissolved Solids [TDS] (ppm)	2019	500	NA	215.6	149–337	No	Runoff/leaching from natural deposits	
Zinc (ppm)	2019	5	NA	0.0153	0.0073–0.025	No	Runoff/leaching from natural deposits; Industrial wastes	

UNREGULATED SUBSTANCES¹

Substance (Unit of Measure)	Year Sampled	Amount Detected	Range Low-High	Typical Source
Sodium (ppm)	2018	74	23–87	Naturally occurring

¹Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist U.S. EPA in determining their occurrence in drinking water and whether future regulation is warranted.

Definitions

90th percentile: Out of every 10 homes sampled, 9 were at or below this level. This number is compared to the Action Level to determine lead and copper compliance.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SMCL (Secondary Maximum Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TON (Threshold Odor Number): A measure of odor in water.

Manganese in Drinking Water

Manganese is a naturally occurring mineral found in rocks, soil, groundwater, and surface water. Manganese is necessary for proper nutrition and is part of a healthy diet, but can have undesirable effects on certain sensitive populations at elevated concentrations. The United States Environmental Protection Agency (EPA) and MassDEP have set an aesthetics-based Secondary Maximum Contaminant Level (SMCL) for manganese of 50 ug/L (microgram per liter), or 50 parts per billion. In addition, MassDEP's Office of Research and Standards (ORS) has set a drinking water guideline for manganese (ORSG), which closely follows the EPA public health advisory for manganese. Drinking water may naturally have manganese and, when concentrations are greater than 50 ppb, the water may be discolored and taste bad. Over a lifetime, the EPA recommends that people drink water with manganese levels less than 300 ppb and over the short term, EPA recommends that people limit their consumption of water with levels over 1000 ppb, primarily due to concerns about possible neurological effects. Children younger than one year old should not be given water with manganese concentrations over 300 ppb, nor should formula for infants be made with that water for more than a total of ten days throughout the year. The ORSG differs from the EPA's health advisory because it expands the age group to which a lower manganese concentration applies from children less than six months of age to children up to one year of age to address concerns about children's susceptibility to manganese toxicity.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen, disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use, and avoid using hot water to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.